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Wound healing is a multiscale phenomenon Statistics of directed migration from chemotaxis and haptotaxis experiments
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Integrating adhesion, signaling, and actin dynamics 8 ecweun o e
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Our physicochemical model combines adhesion and dendritic actin dynamics. Nascent
adhesions affect the F-actin network by mediating activation of Rho-family GTPases and
mechanically resisting retrograde flow. Rho/ROCK signaling enhances myosin Il motor activity,
which is also affected by the PLC/PKC pathway during fibroblast chemotaxis.
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Not shown: Can mechanical compliance of the adhesion/F-actin linkage explain durotaxis?

A new experimental and analysis workflow
Modified Y-junction design generates stable, tunable gradients
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U-net deep learning automates segmentation, enabling high-throughput
cell tracking (collaboration with Dr. Kevin Flores, NCSU)

Label ground truth nuclei in situ Segment nuclei with U-net [3] deep learning Automatedly build trajectories with local
chemoattractant information

[3] Ronneberger, Fischer, and Brox. Int Conf Med img comp & comp-asst intervention. (2015).

Model credibility

All of our models are formulated with the intent to publish the work in peer-reviewed journals. In publications, care is taken to explain:
* The context for which each model is used, including the biological significance;

* The model’s variables, parameters, processes, and structure(s), with citation of associated literature;

 Explicit and underlying model assumptions and associated justifications;

* Numerical testing of the model according to accepted standards;

 Important limitations of the model.

Together with the provision of the models in executable form (e.g., source code), annotated according to accepted standards, these
steps ensure that our modeling results are repeatable and reproducible, and that our models may be readily adaptable by others.
We are keen to discuss ways that we might improve our internal workflow, including version control and electronic notebooks.




